306 research outputs found

    Lithostratigraphy, biostratigraphy, and stable-isotope stratigraphy of cores from ODP Leg 105 site surveys, Labrador Sea and Baffin Bay

    Get PDF
    Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site

    Interfacial Tension Hysteresis of Eutectic Gallium-Indium

    Full text link
    When in a pristine state, gallium and its alloys have the largest interfacial tensions of any liquid at room temperature. Nonetheless, applying as little as 0.8 V of electric potential across eutectic gallium indium (EGaIn) placed within aqueous NaOH (or other electrolyte) solution will cause the metal to behave as if its interfacial tension is near zero. The mechanism behind this phenomenon has remained poorly understood because NaOH dissolves the oxide species, making it difficult to directly measure the concentration, thickness, or chemical composition of the film that forms at the interface. In addition, the oxide layers formed are atomically-thin. Here, we present a suite of techniques which allow us to simultaneously measure both electrical and interfacial properties as a function of applied electric potential, allowing for new insights into the mechanisms which cause the dramatic decrease in interfacial tension. A key discovery from this work is that the interfacial tension displays hysteresis while lowering the applied potential. We combine these observations with electrochemical impedance spectroscopy to evaluate how these changes in interfacial tension arise from chemical, electrical, and mechanical changes on the interface, and close with ideas for how to build a free energy model to predict these changes from first principles

    Внесок професора В. І. Дейча у розвиток меліоративної справи XIX століття

    Get PDF
    У статті висвітлюється наукова і педагогічна діяльність забутої постаті інженера-гідротехніка, професора В. І. Дейча та його внесок у розвиток меліораційної справи XIX століття.В статье освещается научная и педагогическая деятельность забытой личности инженера-гидротехника, профессора В. И. Дейча и его вклад в развитие мелиорации XIX века.The article highlights the scientific and pedagogical activity forgotten individual hydraulic engineer, Professor V. Deutsch and his contribution to the amelioration of the XIX century

    К вопросу о психолингвистической концепции перевода

    Get PDF
    Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response

    Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations

    Get PDF
    The early Holocene cooling, which occurred around 8200 calendar years before present, was a prominent abrupt event around the north Atlantic region. Here, we investigate the timing, duration, magnitude and regional coherence of the event as expressed in carbonate oxygen-isotope records from three lakes on northwest Europe's Atlantic margin in western Ireland, namely Loch Avolla, Loch Gealáin and Lough Corrib. An abrupt negative oxygen-isotope excursion lasted about 200 years. Comparison of records from three sites suggests that the excursion was primarily the result of a reduction of the oxygen-isotope values of precipitation, which was likely caused by lowered air temperatures, possibly coupled with a change in atmospheric circulation. Comparison of records from two of the lakes (Loch Avolla and Loch Gealáin), which have differing bathymetries, further suggests a reduction in evaporative loss of lake water during the cooling episode. Comparison of climate model experiments with lake-sediment isotope data indicates that effective moisture may have increased along this part of the northeast Atlantic seaboard during the 8200-year climatic event, as lower evaporation compensated for reduced precipitation

    A "critical" climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea

    Get PDF
    Sediment cores from the Norwegian Sea were studied to evaluate interglacial climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic forminiferal assemblages as the core method, a detailed picture of the evolution of surface water conditions was derived. According to our age model, a step-like deglaciation of the Saalian ice sheets is noted between ca. 135 and 124.5 Kya, but the deglaciation shows little response with regard to surface ocean warming. From then on, the rapidly increasing abundance of subpolar forminifers, concomitant with decreasing iceberg indicators, provides evidence for the development of interglacial conditions sensu stricto (5e-ss), a period that lasted for about 9 Ky. As interpreted from the foraminiferal records, and supported by the other proxies, this interval of 5e-ss was in two parts: showing an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the climatic optimum with the most intense advection of Atlantic surface water masses occurred until ca. 116 Kya. A rapid transition with two notable climatic perturbations is observed subsequently during the glacial inception. Overall, the peak warmth of the last interglacial period occurred relatively late after deglaciation, and at no time did it reach the high warmth level of the early Holocene. This finding must be considered when using the last interglacial situation as an analogue model for enhanced meridional transfer of ocean heat to the Arctic, with the prospect of a future warmer climate

    The 8200 year B.P. event in the slope water system, western subpolar North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∼11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∼4 km water depth.Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149

    Intermediate water links to Deep Western Boundary Current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA3209, doi:10.1029/2006PA001409.Records from Ocean Drilling Program Sites 1057 and 1059 (2584 m and 2985 m water depth, respectively) have been used to reconstruct the behavior of the Deep Western Boundary Current (DWBC) on the Blake Outer Ridge (BOR) from 130 to 60 kyr B.P. (marine isotope stage (MIS) 5 and the 5/4 transition). Site 1057 lies within Labrador Sea Water (LSW) but close to the present-day boundary with Lower North Atlantic Deep Water (LNADW), while Site 1059 lies within LNADW. High-resolution sortable silt mean (inline equation) grain size and benthic δ 13C records were obtained, and changes in the DWBC intensity and spatial variability were inferred. Comparisons are made with similar proxy records generated for the Holocene from equivalent depth cores on the BOR. During MIS 5e, inline equation evidence at Site 1057 suggests slower relative flow speeds consistent with a weakening and a possible shoaling of the LSW-sourced shallower limb of the DWBC that occupies these depths today. In contrast, the paleocurrent record from the deeper site suggests that the fast flowing deep core of the DWBC was located close to its modern depth below 3500 m. During this interval the benthic δ 13C suggests little chemical stratification of the water column and the presence of a near-uniform LNADW-dominated water mass. After ∼111 kyr B.P. the inline equation record at Site 1057 increases to reach values similar to Site 1059 for the rest of MIS 5. The strengthening of flow speeds at the shallow site may correspond to the initiation of Glacial North Atlantic Intermediate Water formation also suggested by a divergence in the benthic δ 13C records with Site 1057 values increasing to ∼1.2‰. Coupled suborbital oscillations in DWBC flow variability and paleohydrography persisted throughout MIS 5. Comparison of these data with planktonic δ 18O records from the sites and alkenone-derived sea surface temperature (SST) estimates from the nearby Bermuda Rise suggest a hitherto unrecognized degree of linkage between oscillations in subtropical North Atlantic SST and DWBC flow.This work was funded by the United Kingdom Natural Environment Research Council and supported by the NERC Radiocarbon Laboratory
    corecore